Exercise 1.3.32

Theorem: Let be a functor.

\eta{A'} \circ s= (G \circ F)(s) \circ \eta_A = (G \circ F)(t) \circ \eta_A = \eta{A'} \circ t

\eta{A'}^{-1} \circ G(g) \circ \eta_A = \eta{A'}^{-1} \circ (G \circ F)(f) \circ \eta_A

\varepsilon{B'} \circ (F \circ G)(s) = \varepsilon{B'} \circ (\varepsilon{B'}^{-1} \circ s \circ \varepsilon_B) = s \circ \varepsilon_B = 1{\mathbf{B}}(s) \circ \varepsilon_B

FGF(t) \circ \varepsilon{F(A)}^{-1} = \varepsilon{F(A')}^{-1} \circ F(t)

F(GF(t) \circ \etaA) = F(\eta{A'} \circ t)

GF(t) \circ \etaA = \eta{A'} \circ t

$$

which is precisely the naturality condition for . Thus, is a natural isomorphism, completing the proof.